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* 1. Introduction

The recognition of partially occluded objects from noisy data is an important com-
ponent of many problems in vision and robotics. Recognizing an object generally
entails finding a matching between elements of an object model and instances of
those elements in the data, and thereby recovering a transformation that maps a
model of the object onto a portion of an image. There are a variety of approaches
to the problem of finding possible transformations (see [Besl and Jain 85], [Chin
and Dyer 86] for recent surveys), a common subclass of which are based on trans-
formation clustering. The generalized Hough transform [Ballard 81] [Davis 82], or
related parameter hashing techniques, are often used to perform the transformation
clustering (e.g., [Thompson and Mundy 87] [Silberberg et al. 84] [Silberberg et al.
86] [Lamdan et al. 87] [Turney et al. 85]).

In this paper, we consider the robustness of clustering methods based on varia-
tions of the generalized Hough transform. We investigate the power of such methods

to distinguish clusters that are due to a correct matching of image and model fea-

tures from those that occur at random. We find that the methods work well as

long as the correct match accounts for both much of the model and much of the
sensory data. For moderate levels of sensor noise, occlusion, and image clutter,
however, the methods can hypothesize many false solutions, and their effectiveness
is dramatically reduced,

The idea underlying transformation clustering methods is to accumulate inde-
pendent pieces of evidence for a match. Each pair of model and image features (such

as edges or vertices) defines a range of possible transformations from a model to an
image. In the case of rigid objects, each transformation consists of a translation and

rotation from the model coordinate system to the image coordinate system, and
thus specifies the pose of the model with respect to the image. The uncertainty in
the range of possible transformations depends on the type of feature, and on the
degree of accuracy in the measurement of the features.

Ranges of transformations consistent with a feature pair are computed for all
pairs of model and image features. Those pairs that are part of the same correct

match of a model to an image will result in approximately the same transforma-
tions. Random pairs of model and image features, on the other hand, will result in

randomly distributed transformations. Thus a cluster of similar transformations is

assumed to correspond to a correct match. The validity of this assumption, how-
ever, depends on there being a low likelihood that random clusters will be as large

as those clusters resulting from correct matches.

Two techniques are commonly used to find clusters in an n-dimensional param-

eter space: k-means clustering and the generalized Hough transform. These tech-
niques both start with a set, P, of parameter vectors, or points in the n-dimensional
parameter space, and yield a set of subsets of P, where each subset is a cluster

of similar parameter vectors. In transformation clustering approaches to recogni-
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tion, each dimension of the parameter space, P, corresponds to a component of the
transformation from a model to an image.

The k-means method is an iterative technique that starts by dividing the pa-
rameter vectors into k groups, and then iteratively moves vectors from one group
to another in order to minimize the total distance between elements in each group.
The k-means clustering algorithm requires a distance metric to be defined for com-
paring any two parameter vectors. In the case of transformations from a model to
an image it is difficult to define an appropriate distance metric, because the pa-
rameter space consists of both translations and rotations, which are not directly
comparable. A further limitation of the approach is that some pre-defined number
of clusters, k, must be used. Thus the system must have a reasonable guess of
how many meaningful clusters there are (i.e. how many object instances are in an
image).

Rather than using the k-means method, object recognition systems tend to clus-
ter transformations using the generalized Hough transform. The Hough technique
works by quantizing the parameter space into discrete n-dimensional buckets. Each
parameter vector is entered into a bucket by quantizing its n parameter values and
using them as indices into an n-dimensional table. The quantization will generally
map similar parameter vectors into the same bucket. Hence, the search for large
clusters of similar transformations simply requires examining each bucket to find
those buckets with the most entries.

The remainder of this paper considers the effectiveness of using the generalized
Hough transform to find clusters of similar transformations in order to match a
model to an image. Three central questions are addressed in this investigation:

1. What is the range of transformations specified by a given pairing of model and
image features?

2. How many Hough buckets are specified by such a range of transformations?
3. How many model-image pairings are likely to fall into the same Hough bucket

at random?

The first two questions are considered in Section 3, which analyzes the amount of
uncertainty involved in computing a two-dimensional transformation from a model
to an image, using either pairs of straight edge fragments or pairs of vertices. In
Section 4, the generalized Hough transform is modeled as an occupancy problem, in
order to estimate the size clusters that are likely to occur at random. This analysis
makes use of the analytic results from Section 3, as well as some empirical data
from existing recognition systems. We find that for a wide variety of tasks, clusters
occurring at random are as large in size as those that are due to a correct match.
Thus for th- , tasks, the generalized Hough method is not a good technique for
finding correct matches of a model to an image.

A number of other authors have considered aspects of the noise sensitivity of
the Hough transform, usually in the case of detecting lines or other simple curves in
noisy images [Shapiro 75, Maitre 76, Cohen and Toussaint 77, Shapiro and lannino
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79, Alagar and Thiel 81, van Veen and Groen 81]. Brown [1983 has considered the
noise properties of more general applications of the Hough transform, by treating
the problem as one of signal processing. In this article, we take a different approach,
using discrete combinatorial tools to analyze the problem.

Before addressing the three questions posed above, the next section considers
the generalized Hough transform in more detail. Some of the limitations of the
simplest formulation of the technique are considered, along with the methods that
are generally used to overcome those limitations. Unfortunately, these methods turn
out to the increase the likelihood that many model-data pairings will fall into the
same Hough bucket at random.

2. Parameter hashing: the generalized Hough transform

The generalized Hough transform finds possible solutions to the object pose problem
by searching for large clusters of evidence in a discrete version of a parameter space.
A parameter vector, p, represents a point in an n-dimensional space, P. Each point
in P maps to a point in the n-dimensional discrete Hough space, Rt, that is specified
by quantizing each of the n components of p. The Hough transform method is often
also referred to as parameter hashing, because each quantized parameter value is
a hash key. Implementations of the Hough method generally use an n-dimensional
table to represent R- and refer to the entries in the table as buckets.

When the generalized Hough method is used for transformation clustering, each
dimension of the parameter space, P, corresponds to a component of the transforma-
tion from a model to an image. If the coordinate system of the image measurements
is denoted by ., and the model coordinate system is denoted by M, then P is the
space of mappings from M to I.

For each pair of model and image features, the range of possible transformations
is computed. This set of transformations defines a region, T C P. The quantized
values of this n-dimensional volume, T, are used to enter the model-image pairing
into all the buckets in iH that intersect the range of possible transformations. Those
model-image pairings that fall into the same quantization bucket define a cluster of
similar transformations. It is assumed that the large clusters will identify correct
transformations from a model to an image. Thus recognition consists of searching
the n-dimensional discrete table (the space iR) for those buckets with a large number
of entries.

As an example, suppose that a model consists of linear segments, and the
sensory data has been processed to produce comparable linear segments. Suppose
there are m different model fragments, and s sensory fragments. Each sensory
measurement taken from 1 is matched in turn with each model fragment, for a total
of ms model-data pairings. Consider the pairing of data edge j with model edge
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J. We can compute the transformation required to bring the model fragment into
correspondence with the data fragment. In two dimensions, this transformation
can be defined as the angle of rotation 03j needed to align the tangents of the two
fragments, and the two dimensional translation tjj needed to then align the rotated
model edge with the data edge.

In the case of no uncertainty, (0jJ, tjj) exactly defines the transformation as-
sociated with the data-model pair, jJ. This transformation (GjJ, tij) is represented
by a point in the three-dimensional transform space P. If there is sensor error or
partial occlusion, then the pairing jJ defines a range of a possible transformations,
represented by a volume in P. The corresponding parameters OjJ and tjj are quan-
tized, and used tc enter the pairing jJ into those buckets of the three-dimensional
Hough table that intersect the volume in P.

There are three problems with the generalized Hough method as presented:

1. Similar parameter vectors will end up in different buckets if they are on different
sides of a quantization boundary. This problem is exacerbated by uncertainty in
the parameter values.

2. For high dimensionality parameter spaces, the table can get very large, making
the search for large clusters cumbersome.

3. The likelihood of large clusters occurring at random can be quite high, because
the quantization integrates noise by collecting together all the random events
within a bucket. The likelihood depends on thp ratio of the number of parameter
vectors to the number of buckets.

Two methods are often used to ensure that similar parameter vectors end up in the
same cluster. The first method computes clusters over a local k' neighborhood of
buckets in the Hough table, rather than a single bucket. Generally a 3' neighbor-
hood is used, so that any transformations that are within one bucket of each other,
along any dimension, will be clustered together. The second method computes the
range of possible buckets that each data-model pairing could fall in, and enters it
into each of these buckets. Both methods have the effect of increasing the number
of parameter vectors entered into the table, thereby increasing the likelihood that
large clusters will occur at random.

Reducing the size of the table, so that search space is of a tractable size, in-
creases the likelihood of large clusters occurring at random. The fewer buckets there
are, the more likely that many parameter vectors will fall into the same bucket at
random. Most systems that use the generalized Hough technique for clustering in
high dimensional parameter spaces (such as six degree of freedom three-dimensional
recognition * sks) use only a subset of the parameters to define the Hough table.
This greatly reduces the size of the table, but at the same time greatly increases the
chance of large random clusters.

Thus the techniques used to address the first two problems exacerbate the third
problem. It is this problem that we analyze using a combinatoric model in Section
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4. First, however, we derive bounds on the number of Hough buckets specified by
each pairing of model and image data elements.

3. Two dimensional noise analysis

This section addresses the issue of what we will term the redundancy factor of
entering transformations into the table. That is, how many different buckets in
the Hough table can the same model-data pairing specify? This depends on the
dimensionality of the sensory data, the dimensionality of the transformation from a
model to an image, the coarseness of the tessellation of the Hough space, and the
expected amount of noise in the sensory measurements.

To determine the redundancy factor we need a method for estimating the set
of transformations consistent with a data-model pairing, under different classes of
allowed transformations. We begin with rigid two dimensional problems, using linear
edge fragments. Details of the development are deferred to an appendix. Note that
this is a specific case of using the generalized Hough transform. We will extend
the arguments in later sections to deal with three-dimensional problems and to deal
with problems involving change of scale.

3.1 Rigid transformations

Suppose we are considering the recognition of a two-dimensional polygonal model
from noisy, occluded data. If M is the model coordinate system, we let

Mi be the vector to the midpoint of a model edge, measured in M,

Tj be the unit tangent of the edge, measured in M,

Lj be the length of the edge.

We let mj, tj, tj denote similar parameters for a data edge, measured in the sensor
based coordinate system, 1. (Note that we use upper case characters to distinguish
model parameters and lower case characters to distinguish sensory data parameters.)

The transformation from model coordinates to sensor coordinates may be rep-
resented by

V, = RoVM + Vo

where VM is a vector in model coordinates, Re is a rotation matrix corresponding
to an angle of 6, V0 is a translation offset, and v, is the corresponding vector in
sensor coordinates.

We need to know what transformations will map a model edge to a data edge.
First, if tj > Lj, we assume that the two edges cannot match (we consider the
case of variable scale in the next section). Thus, suppose that tj :5 Lj. Then the
rotation needed to align the two tangents is given by the angle 0m between Tj and
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ij, and this defines a rotation matrix Re.. If we apply this rotation to the set of
edge points

f I [- 2 2 i
we get a set of transformed points

{Re [M + atJ aE 2 2

To align the edges, we need to translate these rotated points. Now, because
j L j, there are many transformations that will cause the edges to overlap.

Consider one endpoint of the data edge

jP i = i Lj - -t .

If this happens to coincide with a model edge endpoint,
P1 = MJ - LJjj

2
then

mi -#tj= Re [MJ-L #i +Vo

so that the translation is

VO = mj - RO_ Mj + Lj -Rej

because Re,_,Tj = ij. Similarly, if the other endpoints align, we get

VO = mj - ReOMj L J 'jRe TJ.
2

Because any intermediate position is also acceptable, the set of translations consis-
tent with matching model edge J to data edge j is given by

{mi - Re_ MJ + Rt a E [~Li 2 I,, L j (1)

Hence, matching model edge J to data edge j yields a set of points in transform
space P, with a single value for the rotation parameter and a set of values for the
tratsTation, that correspond to a line of length Lj - 4j, with orientation ReTjT in
the x-y plane.

This, however, ignores the issue of noise in the measurements. In practice, we
may only know the position of the endpoints of the data edge to within some ball
(which in two dimensions is just a circle) of radius cp, and the orientation to within
an angular error of e. For the case of two dimensional lines, tbhse error ranges
are related. Given endpoint variations of cp, it is straightforward to show that the
maximum angular variation is when the correct line is tangent to both circles of
radius cp about the two endpoints, and is given by

fa = tan-1 ( ,E2)
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provided t > 2,E.

Inclusion of error effects on position measurements imply that the line of feasible
translations, for a given rotation, (as given by equation (1)), must be expanded to
include any points in the parameter space within cp of that line. Further, this
expansion into a region must be repeated for each value of 0 in [8, - ., 0, + c].
Note that this carves out a skewed volume in Hough or transform space, because the
region's center and orientation are functions of 9 (see equation (1)). This observation
has been carefully analyzed in [Clemens 86].

Thus, given " 7, Tj, Lj, in., t, 11, we will use the following conditions:

* If tj - 2cp > Lj, then there are no consistent transformations,

* Otherwise, the set of feasible transformations is denote by the volume

V(j,J) = U S(8,j,J)
GE16m, -f &,am +fQ. I

where an individual set of translations is denoted by:

S(O,j,J) = ((,Vo)H3a,QI < Lj- t , }- R6M. + atj - V01 S p
_ , 2 ln-R~ ''a-v1 <c

These conditions imply that if a model-data pair of edges satisfy the unary
constraint of length %greement, then there is a set of transforms that must all be
considered as consistent.

We ran already use these results to estimate the size of the set of feasible
transformations. Some simple manipulations indicate that the volume of the region
defined above is given by

2f" [2cp(LJ _ t,) + 7E]

Of more interest is the number of buckets in the Hough space that are consistent
with such volumes.

If the Ho'xgh space h were continuous, and hence identical to the transform
space P, then we would simply need to compute all such volumes, over all data-model
pairings, and let f(8, t) denote the number of volumea that contain the point (0, t).
Then the correct interpretation would be the point at which f attains a maximum.
Howe-ver, in real systems, one usually tessellates the transform space P into non-
infinitesimal buckets to obtain the Hough space 7. We let the dimensions of the
Hough buckets be he along the rotation axis, and ht along each of the translation
axes. Thus, we really want to determine the number of buckets that intersect one
of these volumes, as that will determine the redundancy of the hashing scheme.

We begin by considering the plane of buckets consistent with a rotation value
of 0. Suppose we let B(O, j, J) denote the set of buckets in this plane that intersect
the slice S(O,j,J). As 0 varies from 0, to 0, + he, the slice S(O,j,J) changes, and
hence the set B(#, j, J) may also change. To determine the entire set of buckets

U B( , j, J)
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Figure 1. Region of feasible translations. The outlined area denotes the set of translations

that are consistent with a data-mrodel pairing, as the orientation ranges over the size of a
lough bucket. Details of the developrnient are given in the appendix.

we can first project each slice in x-y, S(O,j, J) onto the x-y plane, and then Aind
thez number of buckets that intersect the itnion of these projections.

The set of feasible translations under this projection is shown in Figure 1. In
the appeadix, we show that a lower bound on the expected redundancy factor for
pose clustering, 6, i.e. the number of buckets into which a single data-model pairing
casts a vote is given by

= tan- (2b)

and where the modified area is given by

A5.(he, c* f*, LV, 3) -:: 2M*(1 - OLL+7r(c )2+ cLl - /3) + chM
+3L ~r +2;(EhM

+ I- (2M'he + 2(1 - 0) L + 27E;). (2c)

Note that this expression depends on the distance of the midpoint of the model
edge from the center of the coordinate system, M, on the model edge length L,
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on the length of the data edge, which we have assumed to be a fraction /3L of the
model edge length, on the bound in position uncertainty, E,, and on the size of the
rotational dimension of the Hough bucket. The expressions also depend on the size
of the translation dimension of the Hough bucket, which we have normalized for,
using

c; L* L M M

We have omitted the subscripts in the above expression, in an attempt to maintain
readability of the expression.

3.1.1 Examples

To demonstrate the effect of this redundancy, we consider some representative exam-
ples. For simplicity, we will consider an object with equal length sides (Lj = L = 50
pixels VJ) and with constant offset of the midpoint of each edge from the centroid
of the object, (Mj = M = 100 pixels VJ). We will assume that the size of the
image is 500 pixels on a side. We consider two different tessellations of the Hough
space, ht = 5, hG = r/36 and ht = 25, he = 5?r/36. For each of these, we consider
three different error bounds on the sensory data, EP = 2.5,5 and 10 pixels. We also
consider three different levels of fragmentation of the data edges, that is, the fraction
of the model edge actual obtained in the image as a data edge. This is given by
setting /3 = 2cp/L, .5, 1.0, corresponding to the smallest allowed size, to half the size
of the model edge, and to the case of no occlusion of the edges. Recall that / refers
to the ratio of the length of the deta edge to the length of the model, and reflects
the amount of occlusion present in an individual edge. Tables 1 and 2 summarize
the redundancy b for each of these case, shown both in terms of the actual number
of buckets, and as a fraction of the total buckets in the tessellated space, using the
bounds of equation (2).

3 2 .5= 1J

(P = 2.5 1116 .00155 95 .00013 15 j.00002

5 1476 .00205 300 .00042 55 .00008

10 2196 .00305 1210 .00168 260 .00036

Table 1. Redundancy of Hough hashing, for tessellations of ht = 5 and he = r/36. The

lower bound on actual number of buckets hashed, and the fraction of the total number of
buckets is given, for a single data-model pairing. The total number of buckets in this case
is 720,000.

The redundancies reported above apply to a single data-model pairing, and the
examples reported in Tables I and 2 use particular values of the length of the model
edge, and its offset from the origin of the model coordinate system. Very similar
redundancies hold for other values of these parameters, however. In Table la, we
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__= / = .5 /3 = 1

CP = 2.5 48 .00857 4 .00071 2 .00036

5 46 .01000 10 .00179 3 .00054

10 64 .01143 35 .00625 10 .00179

Table 2. Redundancy of Hough hashing, for tessellations of ht = 25 and he = 57/36. The
lower bound on actual number of buckets hashed, and the fraction of the total number of
buckets is given, for a single data-model pairing. The total number of buckets in this case
is 5,600.

show the redundaicies obtained for fixed values of error, cp = 5, and a fixed bucket
size, ht = 5, he = ir/36, but with varying edge length L and varying model offset M.
One can see that considerable variation in these values yields similar redundancies.

M= 50 100 200

L=25 352 440 616

=50 250 300 400

=100 205 245 325

Table la. Redundancy of Hough hashing, for tessellations of ht = 5 and he = T/36. The
lower bound on actual number of buckets hashed is given for a single data-model pairing.
The error is fixed at Ep = 5, occlusion is fixed at /3 r- .5 and the length and offset of the
model edges are varied. The total number of buckets in this case is 720, 000.

The data in Tables 1 and 2 deal with extended edge fragments. If the data is point
data, for example, vertices, then /3 = 1 and L = 1. In this case, we need some other
means of estimating the orientation, and for illustrative purposes we use c, = 7r/36.
This is a tighter bound than that used in the previous examples. The redundancy
for the two different tessellations of the Hough space, and for the different positional

error bounds are shown in Table 3.

ht_=5, h= ht =25, he=-L5 j

c = 2.5 10 .00001 2 .00036

5 22 .00003 3 .00054

10 52 .00007 5 .00089

Table 3. Redundancy of Hough hashing, for point data. The error in measuring the normal
is assumed to he Ea = 7r/36. The lower bound on actual number of buckets hashed, and
the fraction of the total number of buckets is given, for a single data-model pairing. The
number of buckets is 720,000 for the left part of the table, and 5,600 for the right.

All of the above examples involve the use of a full three-parameter Hough space. In
many cases, it is common to use the projection of that space onto a smaller subspace,
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ht =5,ho = ht =25,he =

.= 2.5 8 .0008 1 .0025

5 15 .0015 2 .0050

10 34 .0034 3 .0075

Table 6. Redundancy of Hough hashing, for point data, using projection of the full space
onto the two dimensional translation subspace. The error in measuring the normal is
assumed to be c. = ir/36. The lower bound on actual number of buckets hashed, and
the fraction of the total number of buckets is given, for a single data-model pairing. The
number of buckets is 10,000 for the left part of the table, and 400 for the right.

typically using the projection onto the translational subspace. We can also derive

estimates of the redundancy of this method. We can use the same equations as

before, with some minor changes. First, the swept area of the translational subspace
is given by considering the full range of rotational values, 2 c. in place of he. Second,

the redundancy factor is obtained by considering only the translational subspace,

and is given by
b > [A;.(2c,,, p, M*,L*, 0)]. (3)

Examples of the redundancy, using equation (3) are shown in Tables 4, 5, and 6.

__=3 j j- 3= .5 =

= 2.5 485 .0485 50 .0050 9 .0009

5 518 .0518 116 .0116 28 .0028

10 582 .0582 334 .0334 95 .0095

Table 4. Redundancy of Hough hashing, for tessellations of ht = 5 and he = r/36, using
projection of the full space onto the two dimensional translation subspace. The lower bound
on actual number of buckets hashed, and the fraction of the total number of buckets is
given, for a single data-model pairing. The total number of buckets in this case is 10,000.

=2e #l .5= 1

C = 2.5 28 .07 4 .01 1 .0025

5 30 .075 8 .02 3 .0075

10 32 .08 19 .0475 7 .0175

Table 5. Redundancy of Hough hashing, for tessellations of ht - 25 and he = 57i/36,
using projection of the full space onto the two dimensional translation subspace. The
lower bound on actual number of buckets hashed, and the fraction of the total number of
buckets is given, for a single data-model pairing. The total number of buckets in this case

is 400.
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Several observations are in order. First, the tables show that in general, the redun-
dancy of Hough hashing can be quite large, both in terms of the number of buckets
consistent with a single data-model pairing, and in terms of the fraction of the Hough
space deemed consistent with such a pairing. As expected, when one considers the
matching of vertices to vertices in place of matching edges to edges, the redundancy
improves. This is to be expected, since in the edge case, a partial edge can slide
along its corresponding model edge, leading to more feasible transformations.

As well, when the sensor error is reduced, the redundancy improves. Increasing
the coarseness cf the Hough tessellation can reduce the total number of buckets into
which a data-model pair votes, but in general this increases the fraction of the total
number of buckets selected. In general, the analysis and examples argue that the
redundancy of Houghing can be quite high.

While we have provided examples of several levels of sensor error, we note that
the higher levels of error are probably more indicative of the situation encountered
with real images. Several factors will contribute to the bound for cp. First, aberra-
tions in the optics will cause the recorded edges to deviate from the actual physical
edge. Second., smoothing effects in the edge detector will add to the displacement of
recorded edges. The amount of deviation will depend on the specifics of the opera-
tor, but 1 or 2 pixel errors are likely to be common. Third, using a split-and-merge
operation to extract linear segments from grey level edges will further add to the
error, typically by several pixels, so that overall error bounds of at least 5 pixels are
to be expected.

3.2 Scaled transformations

Suppose we now allow the objects to scale, as well as rotate and translate. In this
case the transformation from model to sensor coordinates is given by

v, = kROVM + V0

where VM is a vector in model coordinates, Re is a rotation matrix corresponding to
an angle of 0, V0 is a translation offset, k is a scale factor and v, is the corresponding
vector in sensor coordinates.

In this case, the set of feasible translations corresponding to a data-model pair-
ing is a function of both the scale and the rotation:

mi - kRe_ MM + Re.RTj I aE [2kL2 -  kLj-4]}

In this case, the scale has a minimum bound of

k> -.
- Lj

To determine the redundancy factor for parameter hashing in the case of scale,
we again want to determine the number of buckets consistent with a data-model
pairing for a single slice of the x-y components of the transform space. Note that

in this case, the transform space T is four dimensional, with an extra axis for the
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scale factor. Projecting the volume obtained as 0 varies over the bounds of a single
bucket gives us the volume shown in Figure 2, where now the borders are functions
of the scale factor. If we now look at the projection of the volume as k is varied,
we will get the region obtained by varying the region in Figure 5 over the range of
values of k. This new region is shown in Figure 3.

Figure 2. Rotation of the line of feasible translations through he radians.

Using an analysis similar to the previous case (details are given in the appendix), we
can derive bounds on the redundancy in the case of objects that can scale. Suppose
we define the full range of possible scale factors to be [1, k,,_], so that the model is
defined as the smallest possible instance of an object. Then to count the redundancy
factor in this case, we must sum the number of buckets obtained over all possible
scale factors. If the spacing of the Hough buckets in the scale dimension is hk, then
this sum is given by:

b. > / l 1/ TA-,-(i a;, L hk [iAhk)+, ] r,+ (h,)] (5)

where

i'=I k
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Figure 3. Region of translation space consistent with scale variation and angle variation.

and where
A;,+ = A: + P.

P, >he (kh + k1 )M; - kh - k L.) + (kh + kt)L , - 2t; + 2(kh - kt)M; + 27rc;*

A;(Ak, kh) =hokhM! (khL - t ) 2

+ heAk [kh - ! (M;)2 +

+ -M; [(2k' + 2khAk + k2)L - (2kh + Ak)1;]

+ 2+;Akm; + h ( k)t.

The final, rather messy, expression is a function of the range of variation in scale

Ak as well the maximum value of the scale parameter kh.

We can use this to generate example redundancies. Tables 7 and 8 show the

redundancy, for the case of M = 100, L = 50 using a fine tessellation of ht = 5, h9

and using 100 buckets in the scale dimension. We consider both the case of
kmaz = 2 and kmoa, = 10 (Tables 7 and 8 respectively).

P)2.
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1 / -- .5 /3 = 1 /3 -- 1.5

CP = 2.5 36320 .00050 12444 .00017 2742 .00004

CP = 5 99190 .00138 28925 .00040 7872 .00011

CP = 10 345752 .00480 95500 .00133 23863 .00033

Table 7. Redundancy of Hough hashing, including a scale dimension with range from I to 2
in increments of .01. T Nellations are ht = 5 and he = jr/36. The lower bound on expected
number of buckets hashed, and the fraction of the total number of buckets is given, for a
single data-model pairing. The total number of buckets in this case is 72,000,000.

= .5 = 1 0 = 5

;P = 2.5 518455 .00720 286998 .00399 37887 .00053

CP = 5 1153870 .01603 531745 .00739 41820 .00058

CP = 10 3063967 .04256 1281950 .01780 99908 .00139

Table 8. Redundancy of Hough hashing, including a scale dimension with range from I
to 10 in increments of .09. Tessellations are ht = 5 and h9 = r/36. The lower bound on
the expected number of buckets hashed, and the fraction of the total number of buckets
is given, for a single data-model pairing. The total number of buckets in this case is
72,000,000.

We can also do the parameter hashing by projecting onto a subspace of the
full space. In the case of allowing scale to vary, for instance, we can consider
the projection of the 4D volume into the normal 3D space spanned by the two
translational and one rotational dimensions. The data for the cases of Tables 7 and
8 under this projection are given in Tables 9 and 10.

= .5 / = 1 = 1.5

CP = 2.5 1860 .00258 897 .00125 310 .00043

Cp = 5 4180 .00581 1675 .00233 704 .00098

Cp = 10 11308 .01571 4120 .00572 1568 .00218

Table 9. Redundancy of Hough hashing, including a scale dimension with range from 1 to
2, projected onto the normal 3D space. Tessellations are ht = 5 and he = ir/36. The lower
bound on the expected number of buckets hashed, and the fraction of the total number of
buckets is given, for a single data-model pairing. The total number of buckets in this case
is 720,000.

All of the examples of this section argue strongly that the redundancy of Hough
transforms, in the presence of sensor error and partial occlusion of data elements,
is quite high. In particular, the number of buckets in the Hough space that are
consistent with a data-model pairing can be a significant portion of the total Hough
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= .5 = 1 = 5

.P = 2.5 59130 .08213 34113 .04738 6393 .00888

CP = 5 121180 .16831 58260 .08092 6558 .00911

C = 10 279488 .38818 122190 .16971 13788 .01915

Table 10. Redundancy of Hough hashing, including a scale dimension with range from
I to 10, projected onto the normal 3D space. Tessellations are ht = 5 and he = V/36.
The lower bound on the expected number of buckets hashed, and the fraction of the total
number of buckets is given, for a single data-model pairing. The total number of buckets
in this case is 720,000.

space. This relative redundancy increases with increasing error, with occlusion of
data edges, when scaling is included as a free parameter, and when projections of
the full parameter space onto subspaces is used. When point data are used with
minimal error, the redundancy of the Hough technique is more reasonable, but in
general cases, the method has severe redundancy problems.

3.2 Three dimensional problems

We can also extend our method of analysis to three dimensional problems. In this
case, we assume that we are matching planar patches of 3D data, together with an
estimate of the surface normal of the patch, against comparable planar model faces.
For ease of analysis, we will assume circular patches. As in the 2D case, we need to
determine the volume in transform space consistent with a pairing of a data patch
and a model face, and then determine the number of Hough buckets intersected by
the volume.

To represent the transform space, we use:
* a cubic cell tesselation of the subset of R.3 defining legitimate translations of

the mode. Each bucket has sides of size ht.
* a partition of the surface of the Gaussian sphere, used to denote the axis of

rotation of the model. Each section has an area of hr.
* a partition of the range [0, 21r) for the angle of rotation about the axis given

above. Each section has a size of ha.
Now, we first consider the rotation part of the transform. Given a model normal

$Q and a measured data normal fi, there is a set of rotation vectors, and associated
angles, that will cause N4 to rotate into fi. This set of rotation vectors (F} consists
of those unit vectors lying on the great circle of points on the Gaussian sphere,
equidistant from h and f4. Equivalently, they are the set of unit vectors i" such that

<,- fi >= 0
where the special case of N4 = fi is treated separately.

Now, the data normal ft is not exact, but deviates from the correct normal by
some error. We assume that t lies within a bounded range of the actual normal ito,
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O given by
given by< fi, ft0 >_ 2!Cos C..

We need to estimate the set of feasible rotation vectors i as fi varies over the ca-cone
about i1o. That set is given by the region swept out on the Gaussian sphere by the
great circle perpendicular to the unit vector fh in the direction of 1N - ft as fi varies
over the range defined by

< fi, fo >_2 cos C.
To see what this looks like, consider the case in which h0 = -Ni. Then ih must
lie in an !--cone about & (since 14 - fi0 = 2Ni and fi varies within a cone spanned
by ca, the intersection of this cone with the Gaussian sphere gives an !. cone).
This means that the perpendicular great circle sweeps out a band about the great
circle perpendicular to &, with a maximum deviation of A& on either side. We can
straightforwardly evaluate the area swept out, and it is given by

4ir sin T.2

Now consider what happens as ft0 varies from the special case of ft0 = -N4. We
let a denote the angle between 1N and hto. First, the length of the vector N - fi0
decreases to

2 sin

Second, the £,-cone about ft0 now becomes a skewed cone about N - fio. We can get
a lower bound on the size of the largest regular cone contained within this skewed
cone. The geometry is shown in Figure4.

Figure 4. Geometry for determining the cone of possible vectors N4-ft for < ft, fo >> cose.

To determine the scope of this new cone, we need to solve for y, as shown in the
figure. Appropriate trigonometry yields

sin e tan
tany= 2 tan+sin"
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As f4 - h varies over this cone, the great circle perpendicular to it will sweep out an
area on the surface of the Gaussian sphere, and simple integration shows that this
area is given by

4ir

We need to obtain a bound for this area. This expression is minimized for a = 0,
but this corresponds to the special case in which N4 is a fixed point of the rotation.
In this case, while there is no uncertainty in the axis of rotation, there is complete
uncertainty in the angle of rotation, and hence in this case, such a pairing would
intersect

27r

buckets in the rotation part of the transform space. In general, however, the surface
normal will not be a fixed point of the rotation. In this case, (which we treat as
a > E to handle the noise in the system), the rotation angle is uniquely determined,
but the axis of rotation is uncertain. The minimum uncertainty is given by a = (,
and the minimum area swept out on the Gaussian sphere is bounded below by

47r

Hence, given that each bucket in the Hough space has an area on the Gaussian
sphere of h,, a pairing of a model and data patch intersects at least

4r 1

Next, we consider the translation component of the transform. Suppose we
have a model patch of radius R and a data patch of radius r. Once we have rotated
the model, we can slide the transformed model patch so that it contains the data

patch. There are a set of possible translations consistent with this, and they are
delimited by a circle of radius R - r in some slice of the translation components of
the transform space. When we include the effects of positional error (Ep), we get a

disk of radius R - r + cp and height Ep, so that the volume of consistent translations
is

- r +

and hence such a volume intersects at least

2irEp(R - r + C,)2

buckets. Thus, by putting all of this together, we see that the redundancy factor in

the 3D case is bounded by:

[ 4r 1 [27rep(R- r + EP)
2 ]hr ht
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As an example, we consider the case in which e. 7r/1O, p = 5, he = 4ir/100, ht =

5, the results of which are shown in Table 11.

= .2 .5 1.0

R=20 888 456 56

=50 4072 1816 56

=100 14528 6088 56

Table 11. Redundancy of Hough hashing, for three dimensional problems. Tesselations are
ht = 5 and hr = 4ir/200. The lower bound on actual number of buckets is given, for a
single data-model pairing. The parameters varied are the amount of occlusion / and the
size of the model face R.

Note that the bounds derived here are quite weak. We could obtain much tighter
bounds, but feel that these suffice to demonstrate that the same problems observed
in two dimensions also hold in three.

4. An Occupancy Model of the Hough Transform

0 The previous section has addressed the issue of the number of Hough buckets that
are consistent with a pairing of a sensory feature and a model feature. The second
question to be addressed in considering the efficacy of the Hough transform for find-
ing solutions to the recognition problem, is the likelihood of large random clusters
occurring at random in Hough space.

Recall that the recognition problem, when using Hough transforms, is to use all
pairings of model and image features to compute transformations from the model to
the image. Each parameter of a given transformation is quantized, and the transfor-
mation is entered into the appropriate buckets of an n-dimensional table. Buckets
containing a large number of transformations (a peak) are taken to correspond to
an instance of the object in the image. Significantly large clusters are either identi-
fied by a threshold on the number of transformations in a bucket, or by using the
largest few buckets. In either case, the size of peak, 1, that corresponds to a correct
match of the model to the image should be large enough that it is not likely to occur
at random. Note that I will be at most some fraction of m, corresponding to the
fraction of the model features that are matched to image features.

In this section, we consider the robustness of this approach, given the bounds de-
rived in the previous section on the number of buckets for which a single data-model
pairing may vote. We model the generalized Hough transform as an occupancy prob-
lem, in order to obtain an estimate of the probability that a Hough bucket will have
peaks of size I or more at random. This probability should be very small in order for
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the technique to identify primarily true instances of an object in an image, rather
than random groupings of features.

If the transformations from a model to an image were uniformly randomly dis-
tributed over the parameter space, then the probability that a given transformation
would fall into a particular bucket would be .1, where n is the number of buck-
ets. If each instance was independent of the other instances, the probability that r
transformations would fall into a given bucket is n - '. To the extent that transfor-
mations are not uniformly and independently distributed, they will tend to clump
together more than indicated by this model. Thus modeling the transformations as
uniformly randomly distributed yields a conservative model of the actual distribu-
tion. The true distribution will yield random peaks that are at least as large as the
uniform case.

Given a distribution of r events into n cells, one can speak of the occupancy
numbers, or the number of events in each cell, denoted by r,... ,r, where each
ri _ 0 and E ri = r. If the events are randomly distributed such that each of
the nr placements have the equal probability, n-r, then the probability of a given
arrangement with occupancy numbers rl,.. , rn is

Prr, = !r 2 !", rn!

This distribution of events is often termed the classical occupancy problem, or
Maxwell-Boltzmann statistics (for a standard text see [Feller 68]).

For the classical occupancy problem, the probability, Pk, that a given cell con-
tains exactly k events is given by the binomial distribution,

A (i )r-k.

kn
We are interested in the probability that a given cell will contain 1 or more events
at random, which is

L-I

P! = 1- Pk.
k=O

The expected number of cells in a Hough table that will contain peaks of size at
least I is then given by

E>1 = np>1

where n is the number of cells in the table. Ideally, the peaks corresponding to
correct matches should be of a sufficient size, 1, that E> < 1. In other words,
ideally the expectation should be that there will be less than one false peak in the
table.

For even moderate values of n and r, the computation of Pk becomes unwieldy.
For sufficiently large values of n, however, the Poisson approximation to the binomial
can be used. 'rhe error of this approximation is proportional to n - 1 , so for n's of
the size discussed in the previous subsection (104 or larger) the error is relatively
small. Using this approximation,

Pk e
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where A .Thus the parameter A is the ratio of the number of elements entered

into the table, over the number of buckets.
In addition to the Maxwell-Boltzmann distribution, another common distribu-

tion used in occupancy problems is the Bose-Einstein statistic. This distribution has
an experimental basis in particle physics, and assigns an equal probability to each
of the occipancy numbers, rl,...,rn. Under the Bose-Einstein model, for large r
and n, the limiting case is the so-called geometric distribution, where

Ak
Pk ; (1 + A)k+1

This distribution has a long tail as k -. oc, and thus predicts large peaks with a
higher probability than does the Maxwell-Boltzmann model. Hence we use the more
conservative model given by the Maxwell-Boltzmann distribution.

4.1 Evaluating the Generalized Hough Transform

To judge the effectiveness of the generalized Hough transform as a clustering tech-
nique, the occupancy model will be used on some representative problems. First
we will use the redundancy fartors obtained in Section 3 to consider some two-
dimensional recognition problems. Then we will examine some empirical data from
a three-dimensional recognition system.

The A parameter of the occupancy model is the ratio of the number of events
entered into the table to the number of buckets. The number of events, r = msb,
where m is the number of model features, s is the number of sensory features, and
b is the redundancy factor. Thus A = msb/n, where n is the number of buckets in
the table.

We are interested in the likelihood of random peaks that are at least as large as
those due to a correct match, where I is the size peak that is expected to result from
a correct match. A match that correctly pairs all the model with image features
will result in a peak of size I = m. Thus in general I = fin, where 0 < f < 1
is the proportion of model features that are correctly matched to image features.
For a given problem, the values of b and n are fixed, and we will vary m and s to
determine how many peaks of size I will occur at random, for I = .5m, I = .75m,
and 1 = .9m.

First we consider the case of using just the two translation parameters to enter
transformations into the Hough table. With 5 pixel buckets there are a total of
n = 10,000 buckets. If the features are edges, then each pair of model and image
features defines a range of transformations that intersect b = 116 buckets (with an
error range of cp = 5 pixels and a fragmentation of 3 = .5, as shown in Table 4).
In this case, the generalized Hough technique is very poor at finding clusters that
are due to a correct match. If there are more than 47 sensory data points, then the
expected number of peaks of size I occurring at random will be always be larger than
1, for any value of 1 < m. In other words, there will always be false matches if there
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are more than 47 features in the image. Not only will there be more than one iarge
peak at random, there will generally be many large peaks. For example, with 10

model edges and 100 image edges the expectation is that 7209 of the 10,000 buckets
will contain peaks of size 10 or more. Thus a two-dimensional translation Hough

table is not well suited to the problem of clustering transformations by matching
edges, even for uncluttered images with moderate error and occlusion.

When the features consist of vertices rather than edges, the corresponding re-

dundancy factor, b, is 15 (for an error range of Ep = 5, as shown in Table 6). The

expected number of peaks that will occur at random are shown in Table 12, for
peak sizes of I = .5m, I = .75m, and I = .9m. Cases where the expectation is )ess

than 1 are indicated by a dash. Even though the number of redundant entries in
the Hough table is much smaller for vertices than for edges, the number of false

peaks is still quite high, even for modcrately complex images. For example, for an
image with 200 vertices and a model with 20 vertices, 90% of the model vertices

must be matched in order for the expected number of false matches to be low (in
this case 8). If only half of the model vertices are accounted for, then nearly every

fourth bucket (2236 out of 10,000) will have a cluster as large as that resulting from
a correct match.

f = .5 .75 .9

s =200, m = 50 960 1 -

m = 20 2236 103 8

m = 10 3225 863 148

m = 5 5591 2895 1211

s= 100, m=20 11 - -

m = 10 186 9

m = 5 1734 405 73

Table 12. Expected number of peaks occurring at random for various numbers of sensory
features, s, model features, m, and visible fractions of model features, f ("-" indicates a
value of < 1). For vertex features, where b = 15, and with a Hough table of n = 10,000
buckets.

The more model features that are correctly matched to image features, the lar,-er
the resulting cluster of transformations. Thus, another means of quantifying the
power of the generalized Hough technique is to consider what the minimum number

of model fe- ,res must be in order for there to be an expectation of less than one
random peak of size I = fm in the Hough table. This value is shown in Table 13

for the task just considered, of a 10,000 bucket Hough table, vertex features, and
b = 15. The entry N.P. for s = 250 and f = .5 means that there is no possible model

size such that the expected number of peaks of size .5m is less than 1 when there 6I
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f = .5 .75 .9

250 N.P. 52 30

100 30 14 9

Table 13. Size model required to have an expectation of less than one random cluster at
least as big as the correct match, for various numbers of sensory features, s, and visible
fractions of model features, f. For vertex features, where b = 15, and with a Hough table
of n = 10,000 buckets.

are 250 or more image vertices. Thus again we see the limitation of this clustering
method for the recognition of moderately cluttered scenes.

Next we consider the case of using all three parameters to perform the cluster-
ing. For translation buckets of 5 pixels and rotation buckets of 7r/36 radians, there
are a total of n = 720,000 buckets. For edge features, the redundancy factor, b, is
300 (with an error range of ep = 5 pixels and a fragmentation of P = .5, as shown in
Table 1). The expected number of peaks occurring at random are shown in Table

14, for peak sizes of I = .5m, I = .75m, and I = .9m. For a moderately cluttered
image, with s = 500 edges, and a model with m = 10 edges, the expected number
of false peaks is over 40,000 if only half of the model edges are matched to image
edges. If 9 of the 10 model edges are matched, then there is still an expectation of

229 false peaks.
________ f=-.5 .75 .9

s = 1000, m = 100 82,383 2

m = 50 149,009 625 2

m = 25 253,053 14,703 840

m = 10 290,655 97,702 19,260

s = 500, m = 50 63 - -

m = 25 5326 7 -

m = 10 43,549 4048 229

s=250, m=25 13 -

m = 10 1008 15

s= 100, m= 10 53

Table 14. Expected number of peaks occurring at random for various numbers of sensory
features, s, model features, m, and visible fractions of model features, f ("-" indicates a
value of < 1). For edge features, where b = 300, and with a Hough table of n = 720,000
buckets.

Table 15 shows the number of model features required in order for there to be an
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expectation of less than one random peak of size I =fm in the Hough table. For a
relatively cluttered image with 500 edges, and high occlusion of 50%, a model must
have at least 80 features before the expected number of false peaks is less than 1.
Even for a simple image with only 100 edges, with moderate occlusion of 25%, a
model must have at least 10 edges for there to be an expectation of no false matches.
Thus even using the full three parameters for clustering, there is a high likelihood
that random clusters will be as large as those due to a correct match.

f = .5 .75 .9

S = 1000 400 104 56

500 80 28 19

250 30 16 12

100 16 10 7

Table 15. Size model required to have an expectation of less than one random cluster at
least as big as the correct match, for various numbers of sensory features, s, and visible
fractions of model features, f. For edge features, where b = 300, and with a Hough table
of n = 720,000 buckets.

Finally, we consider the case of using vertex features and the three-dimensional
parameter Hough table with n = 720,000 buckets. The relevant redundancy factor
is b = 22 (with an error range of ep = 5 pixels as shown in Table 3). Table 16
shows the expected number of peaks of a given size that will occur at random, and
Table 17 shows the size model necessary to limit the expected number of false peaks
to less than one. In Table 17 it can be seen that for all but very complex images,
a match of a model with 10 or fewer features will result in an expectation of less
than one false peak in the Hough table. Thus the method works relatively well for
this case. The cost is quite high, however, because there are about two orders of
magnitude more buckets to be searched than there are distinct transformations from
the model to the image. The number of transformations is ms, which is at most a
few thousand, whereas there are 720,000 buckets.

The Generalized Hough Method for 3D Recognition

In this section, we use some empirical data on the number of transformations from
a model to an image to evaluate the power of the generalized Hough transform in a
three-dimensional recognition task. As with the above results based on the analytic
formulation - r the two-dimensional problem, we find that the likelihood of large
peaks occurring at random is very high for even moderately complex images and
levels of uncertainty.

For 3D recognition, the size of a full Hough table becomes prohibitive, so only a
subset of the transformation parameters are used to form the table. For example, in
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__f = .5 .75 .9

s = 1000, m = l0 12 -

m = 5 7594 382 14

s = 500, m = 5 1996 51 -

a = 250, m = 5 511 6

s= 100, m=5 83 -

Table 16. Expected number of peaks occurring at random for various numbers of sensory
features, s, model features, m, and visible fractions of model features, f ("-" indicates a
value of < 1). For vertex features, where b - 22, and with a Hough table of n = 720,000
buckets.

f= .5 .75 .9

s = 1000 14 8 7

500 10 7 5

250 8 6 5

100 6 4 4

Table 17. Size model required to have an expectation of less than one random cluster at
least as big as the correct match, for various numbers of sensory features, s, and visible
fractions of model features, f. For vertex features, where b = 22, and with a Hough table
of n = 720, 000 buckets.

[Thompson and Mundy 87] the two parameters of rotation out of the viewing plane
are used for an initial clustering. The Hough buckets are of size 20, yielding a total
of n = 32,400 buckets. An error range of 150 is allowed, so each transformation is
entered into an average of 82 = 64 buckets. A model has about m = 5 features, an
image has about i = 3000 features, and this results in about 20,000 transformations.
Thus a total of about r = 1280000 transformations are entered into the table,
yielding a A of about 40. In order for the expected number of false peaks in the
table, E>, to be less than one, the peak size, 1, must be 68. This is an order of
magnitude larger than the number of model features, m. Peaks of size at least m,
which is 5, will occur at random with a probability of 99%. In other words, this
initial clustering eliminates virtually none of the candidates.

Following the initial clustering, a secondary clustering is performed using the
third rotation parameter. This parameter is again quantized in 20 buckets, so there
are a total of n = 5,832,000 buckets in the three-dimensional table. Each transfor-
mation is now entered in 8' = 512 buckets in order to allow for 150 errors. Thus
20,000 transformations yields r = 10,240,000 table entries, and A = 1.8. In order for
E>1 < 1, the peak size, 1, must be at least 11, which is a factor of two larger than the
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number of model features. Peaks of size 5 occur with a probability of about 1%, so

there will be nearly a hundred thousand false peaks in the three-dimensional Hough

table. Thus the remaining three transformation parameters still must perform a

good deal of work to eliminate the false matches. Even with the full 6 parameters,
false matches sometimes remain [Thompson and Mundy 87]. Finally, the amount
of search required is very large, as about 10 million buckets must be considered in

order to find the buckets with peaks.

In order to get a more complete picture of the utility of the generalized Hough
transform for transformation clustering, Table 18 shows how large the peak size,

1, corresponding to a correct match must be in order to limit the probability of a
random peak of at least that size, p_>i. The values are shown for various levels of
A = L, the ratio of number of table entries to number of buckets are shown, and
various probabilities, p>t. Recall that in order for the expected number of false

matches to be less than 1, the probability should be less than 1. Thus for a Hough
table with 10,000 entries the corresponding column would be 10', and for a million

entries it is the 10-6 column.

P_1 = 10-2 10-3 10-4 1O-5 10-6 10-7

A = .25 2 3 4 5 6 7

.5 3 4 5 6 7 8

1 4 5 6 8 9 10

2 6 8 9 10 12 13

4 9 11 13 15 17 18

8 15 18 20 23 25 27

16 26 30 33 36 38 41

32 46 51 55 59 62 65

Table 18. Peak size, 1, for different values of A = , and different probabilities, P>j, of
peaks at least as large as I occurring at random.

5. Summary

We have fort' fly considered several aspects of the generalized Hough transform as a

method for recognizing objects from noisy data in complex cluttered environments.
We have analyzed both the redundancy of the bucketing operation, and the like-

lihood that random clusters of transformations will be as large as those resulting
from a correct match. The major results of this analysis are as follows:
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1. We kiave shown analytically that the range of transformations specified by a
given pairing of model and image features, can be quite large. This is particu-
larly true in the case of extended features, which can be partially occluded in
the scene, and in the presence of significant amounts of sensor uncertainty.

2. We have shown analytically, and through representative examples, that the
number of Hough buckets specified by such a range of transformations can also
be quite large. The fraction of the total number of buckets that are specified by
a single data-model pairing increases with increasing sensor uncertainty, with
a reduction in the total number of buckets (i.e. increasing coarseness of the
Hough space), with increasing occlusion, when projections onto subspaces of
the full parameter space are used, and when scale is allowed to vary.

3. We have shown, using an occupancy model, that the number of model-image
pairings likely to fall into the same Hough bucket at random, can be quite high.
As a consequence the clusters that occur at random are often likely to be larger
than those that correspond to a correct solution. This may force a recognition
system to examine large portions of the Hough space, in order to verify a correct
interpretation from a spurious collection of parameter vectors. This problem is
exacerbated as the redundancy factor increases, and hence is affected by changes
in sensor uncertainty, Hough tessellation and scene complexity, as above.

Our conclusion is that while the generalized Hough transform technique is useful
for some classes of recognition tasks, it does not scale well, and is poorly suited
to recognition in complex environments. For example, our analysis suggests that
the Hough transform should be adequate for the recognition of objects with limited
occlusion and moderate sensor uncertainty, using isolated points such as vertices
as the matching features. This is supported by the empirical evidence of several
researchers in the field (e.g., [Silberberg et. al. 84] [Linainmaa et al. 85]). At the
same time, however, the analysis suggests that the method will scale poorly, when
applied to complex, cluttered scenes, or when using extended features such as edges
(which are subject to partial occlusion).

It may seem somewhat surprising that the expected performance of the gener-
alized Hough transform is so poor for complex images. Recall, however, that the
operation was originally used to separate outliers from good data. Its first use in
recognition was for relatively simple tasks, where the data corresponding to the cor-
rect solution is a fairly large fraction of all the data. In contrast, for recognition in
complex scenes the good data is a small fraction of the incorrect data, or "outliers".
It just turns out that the method does not scale very well to tasks where the amount
of correct data is relatively small compared to the amount of incorrect data.
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Appendix

Analysis of the basic case

In this section, we fully derive the relationship defining the redundancy of the Hough
transform for two dimensional edge segments.

voly

M RT/

~L i -lj

vo,x

Figure 5. Range of feasible translations, for fixed 0 and with no position error. The line
in the direction of RTi denotes the set of feasible translations for a given value of 0.

Suppose we are considering the matching of a data edge with a model edge. Consider
the situation shown in Figure 5. This shows the set of consistent translations, for
a given value of 0, say 0,, where we ignore for now the effect of error EP. That is,
for a given rotation, equation (1) defines a set of translations, which are illustrated
in the figure. Now, as 0 varies, this line will vary, in particular, it will rotate about
the center defined by mj, with a radius of 11MjJ1. We want to determine the union
of the projection of each such line into the x-y plane. The situation is shown in
Figure 6.

To find the area of this region, we use the following simple trick. Consider the
lower hashed region shown in Figure 7. If we translate and rotate this region to the
upper hashed region shown in the figure, then we see that the area of the remaining
region is simply given by

j f pdpdO = S h2 -S 1
2

To derive the limits S2 and Sh, we can use the parameters from the known edges.
Consider Figure 8. Here, Mj denotes the size of the vector JIMjij, and 4 is the angle
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Figure 6. Rotation of the line of Figure 5 through ho radians.

x

Figure 7. Total area of the swept region.

made between Mj and Trj. The distance X is simply given by X = (Lj - Ij)/2.
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SI
Mjj X

Sl

Figure 8.

Using the law of cosines, we have

S1
2 = MJ2 + X 2 - 2MjX cos(ir -

Sh2 = MJ2 + X 2 - 2MjX cos(O).

Thus, the entire area covered is

A =2MjhgX sinq5 i.)

Note that by symmetry, we can assume that 0 E [7r/2, r], as the other cases are

similar.
This analysis, however, ignored the effects of the sensing error. In particular,

we know that the translation can be determined only to within a ball of radius es.

Thus, the full area is swept out by first sweeping this ball along the line of feasible

translations, and then sweeping that entire region through the angle he. This is

equivalent to expanding the region swept out by rotating the line over he to include

any point within a distance ep of the boundary of this region. The additional area

is shown in Figure 9.
The largest circular piece (denote (1) in the figure) has an area given by

f he sh+ E,_ (S + ,)2 -

J pdpdO = he (Sh 
2

0=0 P=Sh 2

Similarly, the smaller circular piece (denote (2) in the figure) has area

S- (St - ep),
he2 2

The two rectangular pieces (denoted (3) and (4) in the figure) have area

4XeP.

Finally, the four joining segments have a total angular extent of 27r so that they

contribute an area of
ic2re€p.

Combining these areas with the original area, we find that the area covered by
the entire region is

A(he, cp, Mj, Lj, tI, ~ 2MjheX sinl(4 + 7rC2 + 4c,,X + cpho[Sh + S1].(0- 2°P
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Sa,

2X

Figure 9. Additional region of feasible translations due to sensing error.

Now, we need to find a lower bound for the number of buckets that are in-
tersected by such an area. The simplest lower bound, which is not a tight one, is
given by assuming that the area is square, and can be tightly packed into the z-y
portion of the Hough buckets. This may badly underestimate the number of buckets
intersected by a volume, but it provides a convenient starting place. If the region is
a tightly packed square, then the minimum number of buckets is given by

A(he, ep, M, i, j, , ).

Now, this region corresponds to the number of buckets intersected, as the rota-
tion component varies over the dimension of a single bucket. Thus, the redundancy
factor for pose clustering, b, i.e. the number of buckets into which a single data-
model pairing casts a vote is bounded below by

b> r 2c.1 rA(he,,,Mj, Ljj,4, )4- h e
where the bound on angular error is given by

= tan-, /,_4

and where the area is given by

A(he, c, Mj, Lj, 4, 4) Mjhe(Lj4) sin (0 -
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The measurements in which we are interested depend on the relationship be-
tween dimensions of the object and the tesselation of the Hough space. We can
simplify our expressions, by using relative measurements. In particular, we let

cP = t L*= h" r= -L M.= M

so that the redundancy of the Hough space is
b h A'(h, c, L*, t-

where

c, = tan- 1  (i()2c4(;))

+ 2c;(Lj - t;) + c;he[S, + S;]

S = (M;)2 + 1 (L _ -e)
2 - M; (L, - 1!) cos.

S; = (Mj)2+ _L t )+ +Mj (L -t1')ecos

This gives careful bounds on the redundancy factor. We can get more useful
bounds by considering the following case. We will assume that angle 40 between Mj
and tj is uniformly distributed over the range

This allows us to estimate the expected value of the first term for A*. Finding the
expected value for Sh and SI involves elliptic integrals of the second kind, so we
underestimate the area by finding the minimum value for Sh + S1 , as 4 varies over
its range. A straightforward application of the calculus leads to:

S% + S; > 2M*.

We will also assume that Lj = L for all model edges, that Mj = M for all
model edges, and that the data edges are of equal length,

/j = 3L
for some parameter i, _< < 1.

Under these conditions, the expected area is at least

As(hoc;, M, L*,,) > 2M*(1 - )L* + r (C;)2 + 2e;L*( - ,3) + 2;heM" (5a)
I*

and the expected redundancy is at least
b>[2al [A*(hs,,E;, M*, L*,Z) (5b)

where the bound on angular error is given by

an ()- 4() (5c)
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The expressions in equation (5) give a lower bound on the expected number
of buckets intersected by a data-model pairing. This lower bound is not tight, as
in derivirg it we have assumed that the area of consistency in the z--y plane can
be tightly packed into the tesselations of the Hough space. A better lower bound
on the expected number of buckets can be obtained by accounting for the fact that
the area of consistency may only partially intersect buckets along its border. An
example is shown in Figure 10, in which the swept region has an area that is roughly
equivalent to 6 buckets in size, but which actually intersects 14 different buckets.

0I

Figure 10. The number of buckets intersected may be larger than the ratio of the area of
the region to the area of a bucket.

A simple means of accounting for this effect is to observe that on average, a bucket
on the border of the swept region will be only half occupied. As well, the perimeter
of the swept region can be easily shown to be

P = (Sh + SI) ho + 2 (Li - j) + 21e
which is bounded, by our earlier analysis, by

P > 2Mjhe + 2 (Lj - I.) + 21rip.

The minimum number of buckets intersected by this perimeter is
P

If we normalize with respect to the bucket size, we have
P" > 2M;he + 2 (La - £) + 2wc;.

Since, on average, border buckets are half occupied, in place of A*, we can now use
P.

A P*
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If we let

A;(ho,c;,M*,L*,O)= A +

> 2M*(1 - p)L*he + r C) + 2;L*(1 - i3) + 2E~phoM*
7.

+ (2M-he + 2(1 -,3)L* + 2wre*
2 (2 (3a)

then the expected redundancy is at least

b> l Ah(3b

where the bound on angular error is given by

c, = tan- ( (P) 4(E))c)

Analysis of the scaled case

Similar to the case of rigid objects, we need to formally derive the redundancy of
the Hough transform for objects that can freely scale.

To determine the redundancy factor for parameter hashing in the case of scale,
we again want to determine the number of buckets consistent with a data-model
pairing for a single slice of the z--y components of the transform space. Note that
in this case, the transform space T is four dimensional, with an extra axis for the
scale factor. Projecting the volume obtained as 0 varies over the bounds of a single
bucket gives us the volume shown in Figure 6, where now the borders are functions
of the scale factor. If we now look at the projection of the volume as k is varied,
we will get the region obtained by varying the region in Figure 6 over the range of
values of k. This new region is shown in Figure 3. We need to determine the area
spanned by this region. The heavy lines in Figure 3 break the total area into three
portions. The previous analysis implies that the large portion has an area

2haM'.(k)Xf(kh)sin ( -

where
M.(k) = kM,

- kL, - tj: 2

and where k varies from kt to kh and Mj is the midpoint distance of the model face
without any scaling.

The circular segment of the area in Figure 3 has an area given by

jh#Stlc) pdpa =he St(kh) 2 -
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~where
SI(k)2 = Mfj(k) 2 + X 3j(k)2 + 2M!j(k)Xj(k) cos 4'

Sh(k) 2 = M'(k)2 + Xij(k) 2 - 2Mjd(k)X 3j(k) cos 4'.
To get the area of the slice of the triangular portion, we use the law of sines to derive

[Xj(kh)MJ'(kh) - Xj(kj)Mj,(kj)] sin .
Hence, the area of consistent translations, ignoring the error c. is given by

A. khMJ(khL - 1) sin -

k+ ki LJ2' Lj4 1
+ ho(kh - ke)+ -I

h,- -cos 0 [(k2 + k2)Lj - (kh + kj)I1 ]

Fkh + keL 4]
+ Mj(kh - kt) [-- k-- 2 - sino.

We must also account for error in measuring the position. As in the previous
case, the additio 1 in this case is found by expanding the area in Figure 3 by a
distance ep, as shown in Figure 11.

Figure 11. Region of translation space consistent with scale variation and angle variation.

Using techniques similar to those employed in the case of no scaling, we find that
the additional area, due to sensing error is given by

hEp [Sh(kh) + Se(ke)] + Ep [(kh + ke)Lj - 21j]

+ ' [Sh(kh) - Sh(kt) + St(kh) - Se(ke)] + 7rep.
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Combining these two results yields an area of

A, =hekhMj(khL. - 1j) sin (0 - i')

kh+ k( 2 J2  LJ4]TI~ 1 2Vu( 4~~ 2

- jcos 0 [(k2 + k2)Lj - (kh + ke)lj]

" uJ(kh-kk) [h keL - sinb

1 2 Lj 2]

+ heep [Sh(kh) + St(k1 )] + ep [(kh + kt)Lj - 21j]

+ Cp [Sh(kh) - Sh(ke) + St(kh) - SI(ke)I + 7rc.

Similar to the case of no scale, we can bound this below by finding the minimum
value taken on by the Sh and St terms, yielding

A. >hkhMJ(khLJ - t) sin -

k[ + kt (MJ2 + ) ]

- he M .cos 0 [(k2 + k2)L, - (kh + kt)tj]
2h I

+ MJ(kh - kt) [kh +i LJ - sino

+ hec [(kh + kt)Mj - kh 2 kLJ] + ep ((kh + kt)Lj - 214]

+ 2E (kh - kt) MJ + 7re.2 .

As before, we can take the expected value of this expression as 4, varies uniformly
over the range [7r/2, 7r]. This region corresponds to the number of buckets intersected
as the rotation component varies over the range of a single bucket, and as the sacle
factor varies over the range of a single bucket. Note that in this case, the area of
the translation component of the Hough space that is consistent with an assignment
is actually a function of the scale factor, rather than just a function of the size of
the Hough buckets and the properties of the object and the sensing errors. We can
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rewrite this equation in terms of the range of variation in scale, Ak:

A,(Ak, kh) =hekhMJ (khLJ - 1j) 2

+AGAk[(kA- Ak) (MJ2±+Q)-
+ hMj [(2k 2 + 2khAk + Ak 2 )Lj - (2kh + Ak)lj]

+ MJAk(kh - -) Li -k 2

+hec, [2kh -Ak)M -! k Li] + 2ep(2 (kh -)Li -21j)

+ 2epAkMj + WEC.

As in the previous case, we can normalize the measurements relative to the
dimensions of the Hough spacing, ht, so that the area is given by

A*(,,k,kh) =hekhM; (khL, - 2t) 2

+h,, [k . ((M. (L-__k) ) (M 2 1

+ hLeM [(2k2 + 2khAk + Ak 2 )L! - (2kh + Ak)t;]

+ 2hAkM. + (c+)2.

Suppose we define the full range of possible scale factors to be [1, km.:z], so that
the model is defined as the smallest possible instance of an object. Then to count the
redundancy factor in this case, we must sum the number of buckets obtained over
all possible scale factors. If the spacing of the Hough buckets in the scale dimension
is hk, then this sum is given by:

b-= 1 -. ] | /[A: (hk, ihk)1

where

2' /h -, / l t

is the starting point for the scale summation, and where the first term in the ex-
pression captures any partial inclusion of a bucket.

We have assumed that km.: is some integer multiple of h. As before, the
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bound on angular error is given by I

C' = tan- 2 ;'"-" ' kV(I-)' -4 (;'

Similar to the non-scaled case, we can obtain tighter bounds by considering the
buckets on the edge of the region, which are likely to be only partially intersected
by the region. The perimeter of Figure 9 can be shown to equal

P. =h, (St(kt) - ep) + k*Lj - t + Sh(kh) - Sh(ke)

he (Sh(kh) + Ep) + khLJ - 4j + SI(kh) - Se(kj) + 2rep

and this is bounded by

P -he((kh + kt)MJ kh - k, Lj) + (kh + kj )Lj - 24i + 2(kh - kj)Mj + 21re.

If we normalize with respect to bucket size, we get

P* h ((kh + ke)M; - kt2 L- ) + (kh + kt)L*j - 21 + 2(kh - kj)M; + 2cre.

Hence, a better bound on the expected redundancy is given by

b, 1 - max, , } i. hk [A:,+ (h,ihk)]
h- 2cL,-i hk + [h1

w h e r e r, h

and where POA,*,+ =A.* + --*

2 vf2-


